19 research outputs found

    Eficiência energética avançada para sistema OFDMA CoMP coordenação multiponto

    Get PDF
    Doutoramento em Engenharia EletrotécnicaThe ever-growing energy consumption in mobile networks stimulated by the expected growth in data tra ffic has provided the impetus for mobile operators to refocus network design, planning and deployment towards reducing the cost per bit, whilst at the same time providing a signifi cant step towards reducing their operational expenditure. As a step towards incorporating cost-eff ective mobile system, 3GPP LTE-Advanced has adopted the coordinated multi-point (CoMP) transmission technique due to its ability to mitigate and manage inter-cell interference (ICI). Using CoMP the cell average and cell edge throughput are boosted. However, there is room for reducing energy consumption further by exploiting the inherent exibility of dynamic resource allocation protocols. To this end packet scheduler plays the central role in determining the overall performance of the 3GPP longterm evolution (LTE) based on packet-switching operation and provide a potential research playground for optimizing energy consumption in future networks. In this thesis we investigate the baseline performance for down link CoMP using traditional scheduling approaches, and subsequently go beyond and propose novel energy e fficient scheduling (EES) strategies that can achieve power-e fficient transmission to the UEs whilst enabling both system energy effi ciency gain and fairness improvement. However, ICI can still be prominent when multiple nodes use common resources with di fferent power levels inside the cell, as in the so called heterogeneous networks (Het- Net) environment. HetNets are comprised of two or more tiers of cells. The rst, or higher tier, is a traditional deployment of cell sites, often referred to in this context as macrocells. The lower tiers are termed small cells, and can appear as microcell, picocells or femtocells. The HetNet has attracted signiffi cant interest by key manufacturers as one of the enablers for high speed data at low cost. Research until now has revealed several key hurdles that must be overcome before HetNets can achieve their full potential: bottlenecks in the backhaul must be alleviated, as well as their seamless interworking with CoMP. In this thesis we explore exactly the latter hurdle, and present innovative ideas on advancing CoMP to work in synergy with HetNet deployment, complemented by a novel resource allocation policy for HetNet tighter interference management. As system level simulator has been used to analyze the proposed algorithm/protocols, and results have concluded that up to 20% energy gain can be observed.O aumento do consumo de energia nas TICs e em particular nas redes de comunicação móveis, estimulado por um crescimento esperado do tráfego de dados, tem servido de impulso aos operadores m oveis para reorientarem os seus projectos de rede, planeamento e implementa ção no sentido de reduzir o custo por bit, o que ao mesmo tempo possibilita um passo signicativo no sentido de reduzir as despesas operacionais. Como um passo no sentido de uma incorporação eficaz em termos destes custos, o sistema móvel 3GPP LTE-Advanced adoptou a técnica de transmissão Coordenação Multi-Ponto (identificada na literatura com a sigla CoMP) devido à sua capacidade de mitigar e gerir Interferência entre Células (sigla ICI na literatura). No entanto a ICI pode ainda ser mais proeminente quando v arios n os no interior da célula utilizam recursos comuns com diferentes níveis de energia, como acontece nos chamados ambientes de redes heterogéneas (sigla Het- Net na literatura). As HetNets são constituídas por duas ou mais camadas de células. A primeira, ou camada superiora, constitui uma implantação tradicional de sítios de célula, muitas vezes referidas neste contexto como macrocells. Os níveis mais baixos são designados por células pequenas, e podem aparecer como microcells, picocells ou femtocells. A HetNet tem atra do grande interesse por parte dos principais fabricantes como sendo facilitador para transmissões de dados de alta velocidade a baixo custo. A investigação tem revelado at e a data, vários dos principais obstáculos que devem ser superados para que as HetNets possam atingir todo o seu potencial: (i) os estrangulamentos no backhaul devem ser aliviados; (ii) bem como sua perfeita interoperabilidade com CoMP. Nesta tese exploramos este ultimo constrangimento e apresentamos ideias inovadoras em como a t ecnica CoMP poder a ser aperfeiçoada por forma a trabalhar em sinergia com a implementação da HetNet, complementado ainda com uma nova perspectiva na alocação de recursos rádio para um controlo e gestão mais apertado de interferência nas HetNets. Com recurso a simulação a níível de sistema para analisar o desempenho dos algoritmos e protocolos propostos, os resultados obtidos concluíram que ganhos at e a ordem dos 20% poderão ser atingidos em termos de eficiência energética

    A survey of 5G technologies: regulatory, standardization and industrial perspectives

    Get PDF
    In recent years, there have been significant developments in the research on 5th Generation (5G) networks. Several enabling technologies are being explored for the 5G mobile system era. The aim is to evolve a cellular network that is intrinsically flexible and remarkably pushes forward the limits of legacy mobile systems across all dimensions of performance metrics. All the stakeholders, such as regulatory bodies, standardization authorities, industrial fora, mobile operators and vendors, must work in unison to bring 5G to fruition. In this paper, we aggregate the 5G-related information coming from the various stakeholders, in order to i) have a comprehensive overview of 5G and ii) to provide a survey of the envisioned 5G technologies; their development thus far from the perspective of those stakeholders will open up new frontiers of services and applications for next-generation wireless networks. Keywords: 5G, ITU, Next-generation wireless network

    On the Load Balancing of Edge Computing Resources for On-Line Video Delivery

    Get PDF
    Online video broadcasting platforms are distributed, complex, cloud oriented, scalable, micro-service-based systems that are intended to provide over-the-top and live content to audience in scattered geographic locations. Due to the nature of cloud VM hosting costs, the subscribers are usually served under limited resources in order to minimize delivery budget. However, operations including transcoding require high-computational capacity and any disturbance in supplying requested demand might result in quality of experience (QoE) deterioration. For any online delivery deployment, understanding user's QoE plays a crucial role for rebalancing cloud resources. In this paper, a methodology for estimating QoE is provided for a scalable cloud-based online video platform. The model will provide an adeptness guideline regarding limited cloud resources and relate computational capacity, memory, transcoding and throughput capability, and finally latency competence of the cloud service to QoE. Scalability and efficiency of the system are optimized through reckoning sufficient number of VMs and containers to satisfy the user requests even on peak demand durations with minimum number of VMs. Both horizontal and vertical scaling strategies (including VM migration) are modeled to cover up availability and reliability of intermediate and edge content delivery network cache nodes

    Hybrid Resource Allocation for Millimeter-Wave NOMA

    Get PDF
    The ever-increasing demand for data traffic for future wireless systems poses challenging requirements for 5G wireless communications, such as high spectral efficiency, better interference management, and extensive connectivity. These challenges open the possibility to use non-orthogonal multiple access (NOMA) schemes in future radio access networks. In these schemes, the users are multiplexed in power domain in the transmitter and de-multiplexed using successive interference cancellation in the receiver. In this work, we propose a hybrid resource allocation technique which consists of orthogonal and non-orthogonal radio resources and also study the improvements on cell capacity achieved in several proposed cases. To this end, we use millimeter-wave (mmWave) based single-cell deployment to evaluate the performance of this hybrid scheme

    Doubly Orthogonal Wavelet Packets for Multi-Users Indoor Visible Light Communication Systems

    Get PDF
    Visible Light Communication (VLC) is a data communication technology that modulates the intensity of the light to transmit the information mostly by means of Light Emitting Diodes (LEDs). The data rate is mainly throttled by the limited bandwidth of the LEDs. To combat, Multi-carrier Code Division Multiple Access (MC-CDMA) is a favorable technique for achieving higher data rates along with reduced Inter-Symbol Interference (ISI) and easy access to multi-users at the cost of slightly reduced compromised spectral efficiency and Multiple Access Interference (MAI). In this article, a multi-user VLC system is designed using a Discrete Wavelet Transform (DWT) that eradicates the use of cyclic prefix due to the good orthogonality and time-frequency localization properties of wavelets. Moreover, the design also comprises suitable signature codes, which are generated by employing double orthogonality depending upon Walsh codes and Wavelet Packets. The proposed multi-user system is simulated in MATLAB software and its overall performance is assessed using line-of-sight (LoS) and non-line-of-sight (NLoS) configurations. Furthermore, two sub-optimum multi-users detection schemes such as zero forcing (ZF) and minimum-mean-square-error (MMSE) are also used at the receiver. The simulated results illustrate that the doubly orthogonal signature waveform-based DWT-MC-CDMA with MMSE detection scheme outperforms the Walsh code-based multi-user system

    Generalized hybrid beamforming for vehicular connectivity using THz massive MIMO

    Get PDF
    Hybrid beamforming (HBF) array structure has been extensively demonstrated as the practically-feasible architecture for massive MIMO. From the perspectives of spectral efficiency (SE), energy efficiency (EE), cost and hardware complexity, HBF strikes a balanced performance tradeoff when compared to the fully-analog and the fully-digital implementations. Using the HBF architecture, it is possible to realize three different subarray structures, specifically the fully-connected, the sub-connected and the overlapped subarray structures. This paper presents a novel generalized framework for the design and performance analysis of the HBF architecture. A parameter, known as the subarray spacing, is introduced such that varying its value leads to the different subarray configurations and the consequent changes in system performance. Using a realistic power consumption model, we investigate the performance of the generalized HBF array structure in a cellular infrastructure-to-everything (C-I2X) application scenario (involving pedestrian and vehicular users) using the single-path terahertz (THz) channel model. Simulation results are provided for the comparative performance analysis of the different subarray structures. The results show that the overlapped subarray implementation maintains a balanced tradeoff in terms of SE, EE and hardware cost when compared to the popular fully-connected and the sub-connected structures. The overlapped subarray structure, therefore, offers promising potentials for the beyond-5G networks employing THz massive MIMO to deliver ultra-high data rates whilst maintaining a balance in the EE of the network

    A novel mapping technique for ray tracer to system-level simulation

    Get PDF
    Simulations have become remarkably useful in evaluating the performance of new techniques and algorithms in communication networks. This is due to its comparative cost, time and complexity advantage over the analytical and field trial approaches. For large-scale networks, system-level simulators (SLS) are used to assess the performance of the systems. The SLS typically employs statistical channel models to characterize the propagation environment. However, the communication channels can be more accurately modeled using the deterministic ray tracing tools, though at the cost of higher complexity. In this work, we present a novel framework for a hybrid system that integrates both the ray tracer and the SLS. In the hybrid system, the channel strength in terms of the signal-to-noise ratio (SNR) is fed from the ray tracer to the SLS which then uses the values for further tasks such as resource allocation and the consequent performance evaluation. Using metrics such as user throughput and spectral efficiency, our results show that the hybrid system predicts the system performance more accurately than the baseline SLS without ray tracing. The hybrid system will thus facilitate the accurate assessment of the performance of next-generation wireless systems
    corecore